A Family of Second Lie Algebra Structures for Symmetries of Dispersionless Boussinesq System

نویسنده

  • ARTHEMY V. KISELEV
چکیده

for (1), see [1], transfer the standard bracket [ , ] in sym E to the Lie algebra structures on their domain. We prove that the three new brackets are compatible. The Noether operator A0 is invertible on an open dense subset of E . This yields two recursion operators Ri = Âi ◦ A −1 0 : sym E → sym E . The images of Ri are again closed w.r.t. the commutation, and this property is retained by their arbitrary linear combinations. Using the ‘chain rule’ formula (11) for the bi-differential brackets on domains of the operators Âi and Ri, we calculate the second Lie algebra structures [ , ]Ri on sym E . All notions and constructions are standard [3, 4]. We stress that the concept of linear compatible differential operators with involutive images, which we develop here, can be applied to the study of other integrable systems with or without dispersion (e.g., see [5]).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction of Differential Equations by Lie Algebra of Symmetries

The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...

متن کامل

A Geometric Study of the Dispersionless Boussinesq Type Equation

We discuss the dispersionless Boussinesq type equation, which is equivalent to the Benney–Lax equation, being a system of equations of hydrodynamical type. This equation was discussed in [4]. The results include: A description of local and nonlocal Hamiltonian and symplectic structures, hierarchies of symmetries, hierarchies of conservation laws, recursion operators for symmetries and generatin...

متن کامل

New Solutions for Fokker-Plank Equation of‎ ‎Special Stochastic Process via Lie Point Symmetries

‎In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process‎. ‎This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process‎.

متن کامل

A pr 2 00 4 On the r - th dispersionless Toda hierarchy I : Factorization problem , symmetries and some solutions

For a family of Poisson algebras, parametrized by r ∈ Z, and an associated Lie algebraic splitting, we consider the factorization of given canonical transformations. In this context we rederive the recently found r-th dispersionless modified KP hierachies and r-th dispersionless Dym hierarchies, giving a new Miura map among them. We also found a new integrable hierarchy which we call the r-th d...

متن کامل

0 M ay 2 00 4 On the r - th dispersionless Toda hierarchy I : Factorization problem , symmetries and some solutions Manuel

For a family of Poisson algebras, parametrized by r ∈ Z, and an associated Lie algebraic splitting, we consider the factorization of given canonical transformations. In this context we rederive the recently found r-th dispersionless modified KP hierachies and r-th dispersionless Dym hierarchies, giving a new Miura map among them. We also found a new integrable hierarchy which we call the r-th d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009